

Fatal

Attraction

Using cancer traps against glioblastoma

Sarah, Stefano, Lito, Jeff, Renee, Dung-Tsa, Zach, Katejan, Daniel, Nam, Ray, Mohammad, Junyan, Chris, Solmaz, Heiko

Glioblastoma background

GBM biology that drives failure

 Multifocal and diffusive disease – cells invade beyond surgery and radiation margin

 Residual cells develop resistance to continuous maximum tolerable dose treatment

Patient presentation

THE Sugar THE martin ETB 52 . 52 . 72 surveillance DAV 50 PR CR 1> 08/2015 07/2014 07/2013 07/2012 1105/40 55 x Hale Grant + 6BM IDH BRAF wit MS HT Conten -t-P53 me -

Clinician-choice treatment

Response rates

Bev	Anti PD1 (e.g. Pembro)	Pembro+ Bev	HFSRT+ Bev	HFSRT+ Bev +
				Pembro
23.1%	7.8%	26.0%	52%	83.3%
95% CI: 16.7%-30-5%	95% CI: 4.1 %-13.3%	95% CI: 16.3-41.5	95% CI: 28 %-89%	95% CI: 62 % - 95%

Bev: Bevacizumab, Anti-angiogenic agent **Pembro:** Pembrolizumab, Anti-PD1 (immunotherapy) **HFSRT:** Hypofractionated Stereotactic Radiotherapy

Survival analysis

Data to inform ETB, N=31

Statistics-based prediction for clinician-choice therapy based on clinical trial data

Speed of evolution of resistance correlates with patient response to clinical trial protocol

Machine learning classifiers

Evolutionary Tumor Board

evolutionary dynamics guided protocols

Evolutionary Tumor Board

Ecological Trap to direct cells to the surgical cavity to be irradiated

Ecological trap

Habitat or other feature in an environment that appears to be fitnessenhancing, but actually reduces fitness

Wood thrush

New Zealand fantail

- Therapeutic ecological trap: invasion of glioma cells throughout brain parenchyma.
- The cancer cell trap diverts the cancer cell migratory potential for therapy.
- A high radiation dose is delivered to cancer cells attracted to the trap.

Perspective

Future Oncology

Translation of the ecological trap concept to glioma therapy: the cancer cell trap concept

Boudewijn van der Sanden^{1,2}, Florence Appaix¹, François Berger^{1,2}, Laurent Selek¹, Jean-Paul Issartel¹ & Didier Wion*1

¹INSERM U836, Grenoble Institut des Neurosciences, Université Joseph Fourier, CHU Michallon, Grenoble, France

²CLINATEC, Centre de Recherche Edmond J Safra, MINATEC Campus, CEA, Grenoble, France *Author for correspondence: didier.wion@ujf-grenoble.fr

Acta Biomaterialia 84 (2019) 268-279

Full length article

A new glioblastoma cell trap for implantation after surgical resection

Lila Autier^{a,b,c}, Anne Clavreul^{a,b,*}, Maximiliano L. Cacicedo^d, Florence Franconi^{ef}, Laurence Sindii^b, Audrey Rousseau^{b,g}, Rodolphe Perrot^h, Claudia N, Montero-Menei^b, Guillermo R. Castro^d, Philippe Menei^{a,b}

REVIEW published: 12 August 2011 doi-10.3380/tohor 2010.0084

Reversing the Tumor Target: Establishment of a Tumor Trap

Mathie Najberg 12, Muhammad Haji Mansor 13, Frank Boury I, Carmen Alvarez-Lorenzo2t and Emmanuel Garcion^{1†}

1 CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France, 3 Departamento de Farmacologia, Farmacia y Tecnología Farmacéutica, R + D Pharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, Spain, ³Center for Education and Research on Macromolecules (CERM), Université de Liége, Liége, Belgium

The cancer trap: Autier et al. (2019)

- bacterial cellulose membrane
- close to FDA approval
- visible on MRI

The bait: Hira et al. (2017)

- Stromal Cell-derived Factor-1 (SDF-1 or CXCL12)
- SDF-1 localized in GBM niches
- SDF-1 regulates migration of many cancer cell types (including in GBM)
- SDF-1 facilitates homing of glioma stem-like cells to tumor niches

- Implant the cellulose membrane with attractant during surgery
- Glioma cells trapped for 4-6 weeks while patient recovers from surgery
- Trapped cells eradicated with high-dose radiotherapy

Prefrontal Cortex

Evolutionary Tumor Board

Modelling Radiation response

Challenges:

- Considers evolution of resistance to adapt RT dose
- Resampling antigens to immune system
- Target new sites of disease of progression

Personalized Adapted radiotherapy:

- 5x6Gy kills fast growing populations but non repeatable
- 6Gy every 6 weeks No control of fast growth + Resistance builds up
- PART optimizes at a patient level and at every time step

Evolutionary Tumor Board

evolutionary dynamics guided protocols

Evolutionary dynamics during Avastin / Pembrolizumab Tx

A Non-mechanistic Model of Tumor Volume over Time

$$\begin{aligned} \frac{dV(t)}{dt} &= (\lambda - \gamma(t))V(t) \\ \frac{d\gamma(t)}{dt} &= -\epsilon\gamma(t) \end{aligned}$$

- With no treatment: Tumor grows exponentially
- With treatment: Tumor shrinks with rate $\gamma(t)$ and the drug sensitivity decreases exponentially with rate ϵ

- Continuous therapy: Keep using treatment
- Adaptive therapy: Treat if tumor volume exceeds initial volume, and stop treatment if volume decreases

Evolutionary dynamics during Avastin / Pembrolizumab Tx

Evolutionary dynamics during Avastin / Pembrolizumab Tx

Treatment Recommendation

Adaptation / Reference loop

Evolutionary Evolutionary Tumor Board

Specific Aims

Specific Aim 1. To analyze the response dynamics (tumor volume every 4-6 weeks, neutrophil & lymphocyte count every 2-4 weeks) of N=104 recurrent high-grade GBM patients treated with either avastin alone (N=20), pembrolizumab alone (N=20), HFSR+avastin (N=20), RT+avastin+pembro (N=32; MCC 17978) and RT+avastin+pembro+nivolumab (N=32; MCC 18661).

Specific Aim 2. To simulate evolutionary therapies and evaluate model predictions *vs.* actual patient responses and outcomes.

$$\frac{dC_T}{dt} = \alpha C_T - \beta C_T C_I$$

$$\frac{dC_I}{dt} = \delta_1 C_T C_I - \epsilon C_I$$

Mechanistic Model of Avastin/Pembrolizumab Tx

Mechanistic Model of Avastin/Pembrolizumab Tx

Outcomes & Deliverables

Phase I Trial of Hypofractionated Stereotactic Irradiation (HFSRT) Combined with Nivolumab, Ipilimumab and Bevacizumab in Patients with Recurrent High Grade Gliomas (NCT02829931)

Budget

- \$10K data abstraction
- \$20K graduate student
- \$10K postdoc mentor
- \$7K statistical analysis
- \$3K publication fee

Acknowledgement

- Patient J.D., evaluated by ETB
- Sandy Anderson
- Danae Paris
- Chef Anderson
- Ms. Francoeur & Mr. Butler
- Moffitt PSOC

