Designing and evaluating evolutionary
therapies for advanced progressive thyroid
cancer
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Primary Question: what s the potential

for adaptive therapies to significantly improve
progression free survival in metastatic thyroid
cancer
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Evolutionary Therapy?

What is it?
Cancer is more than a
disease of the genes, a

disease of unregulated
proliferation

Anticipate and Steer the
ecological and
evolutionary dynamics
of the cancer

For the patient —
prolonging life,
improving quality of life




Evolutionary Therapy

« (Cancer is the most intimate experience
that patients will have with evolution by
natural selection

« Cancer cells can only respond, physicians
can plan with for-thought

* The goal is to integrate modelling, cancer
biology and clinical data/application



Advanced Progressive Thyroid
Cancer

DTC: Thyroglobulin

Papillary
Follicular cells |:: Differentiated Follicular
>

I Anaplastic

—> Sporadic

> > Medullary —> -
Parafollicular cells > Familial

MTC: Calcitonin & CEA




Advanced Progressive Thyroid
Cancer
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Adaptive TKI therapy

Delaying the evolution of resistant clones
and decreasing the toxicity profile of TKls
should improve progressive free survival

(PFS) and quality of life (QOL)

Sensitive Resistant (o)

cell L O O cell (o)
OOOO o
CEWRL > ANG > ONHE
et A2 o B
ooooooo therapy O oo therapy Qoo [o) Fo)

Only some cells are Some sensitive The tumour remains
resistant. cells remain. treatable.




Sensitive-Resistant Release
Adaptive Therapy
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Quantitative Resistance and
Evolutionary Therapy

Simulated time




Aim 1: To develop a core mathematical model of tumor progression and
therapeutic response in advanced stage DTC and MTC

Adult patients with advanced progressive 131I-refractory DTC or MTC to be treated with TKI.
We expect to enroll 45 patients in 2 years

Adaptive tyrosine kinase inhibitor therapy in

¥

patients with advanced progressive thyroid cancer

Patients with 250% drop in tumor marker within first two cycles
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One TKI, Separate Populations of
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One TKI, Quantitative Trait, Evolving
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Per capita growth rate:
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Generating virtual patient data from
real data

Beautiful, but not reall!!

« Generative deep learning
replicates and generates
samples from a data
distribution

« Using this technique with
differential privacy, we use
data from ongoing phase 2
and phase 3 drug trials to
synthesize cohorts of virtual

Karras et al. 2017 .
(NVIDIA) patients



Adapting GANs to Medical Data

Real Data

Motivated by recent successes in replicating
ICU patient data, we can apply deep learning
to generate tumor-treatment dynamics without
the need of a model-based augmentation
approach that could contaminate future fits.
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Bringing this to Thyroid Cancer
Patients

Synthetic Data

Patient Calcetonin Trend Distribution
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Obtaining Parameters from Real and

Virtual Patients

Pre-Treatment Data Informs

Tumor Growth Parameters
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Obtaining Parameters from Real and
Virtual Patients

Distribution of Real Tumor and Virtual Tumor Growth Rates
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Max Tolerated Dose vs Adaptive Therapy
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In the quantitative trait model, resistance can
be parameterized to evolve quickly or slowly

Fast speed of resistance

Resistant Trait, Evolutionary speed - fast

Slow speed of resistance

Resistant Trait, Evolutionary speed - slow
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Tumor growth rate compared between models
with fast vs. slow evolution of resistance
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Evolutionary resistance speed
dictates whether adaptive therapy
makes sense
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Aim 2: To develop a core mathematical model of
tumor progression and therapeutic response given a
sequential therapy using two different TKis.

Adult patients with 3'l-refractory DTC
who progressed on Lenvatinib or

Sorafenib
Cabozantinib 2:1 ratio Placebo

A Phase 3, Randomized, Double-Blind, Placebo-
Controlled Study of Cabozantinib (XL184) in Subjects with
Radioiodine Refractory Differentiated Thyroid Cancer
Who Have Progressed after Prior VEGFR-Targeted
Therapy (PI- Tarasova)

Cabozantinib




Sequential use of 2 TKls, quantitative
trait, evolving resistance
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Higher drug dose reduces tumor growth but hastens resist
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Effect of two TKI treatment on tumor growth and resistan.
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Potential for immunotherapy in
Thyroid

NES




Aim 3: To develop, validate and test a core
mathematical model of therapeutic response and its
effects in the tumor immune microenvironment.

Next trial concept: Combination of adaptive tyrosine
kinase inhibitor and anti-PD1 therapy in patients with
advanced progressive thyroid cancer

Adult patients with 131l-refractory
DTC who progressed on TKis

2:1 ratio
Investigator’s choice TKI Investigator’s choice TKIi
Adaptive Therapy Standard Therapy
+ +

anti-PD1 inhibitor anti-PD1 inhibitor
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Lymphoid panel (n=15)

Marker name |Target

GrzB NK and T-cells

PD1 Activated T- and B-cells

PD-L1 Activated T- and B-cells

FOXP3 T-reg cells

CD8 Cytotoxic T-cells

CD69 Activated leukocytes, NK, platelets, Langerhans cells, and
activated macrophages

CD103 Intra-epithelial lymphocytes, E-Cadherin receptor

CD3 T-cells

CD4 T-helper cells

CD20 B-cells

CD45 Common lymphocyte marker

CD45 Common lymphocyte marker

Cytoketin 7 Epithelial cells

Thyroglobulin | Thyroid cells

BRAF V600E | Thyroid cells




Myeloid panel (n=17)

Marker name

Target

Kie7

Proliferation marker

CD66b Neutrophils

MHC Il Antigen presenting cells

CD68 Macrophages

DC-SIGN Dendritic cells

CD163 Macrophages (M2)

Tryptase Mast cells

HLA-DR Macrophages (M1)

CD14 Monocytes, macrophages, Langerhans cells and granulocytes
CD15 Granulocytes, monocytes, neutrophils, and eosinophils
CD33 Monocytes, granulocytes, and mast cells

CSF1R Macrophages (TAM)

CD206 Macrophages (M2)

CD80 Macrophages (M1)

Cytoketin 7 Epithelial cells

Thyroglobulin Thyroid cells

BRAF V600E Thyroid cells




What Does The Tumor Immune Ecology Look Like?

Slice into Quadrats &
Count Stain Positivity

Co-register Images

Quantify Cell Abundance and
Spatial Interactions

* The success of
immunotherapy depends on
the immune composition of
the tumor

« Ecological methods can be
used to describe the
immune ecology using
immunohistochemistry




Combining TKls and Immunotherapy May Re-
awaken the Suppressed Immune Response

CD8
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« See evidence of immune suppression in invasive tumors

* Immunotherapies can be used to “re-awaken” the immune system, allowing it to
attack the tumor.

« Can model the combination to test prediction and determine most effective
treatment strategies

» Will test verify in upcoming clinical trial, description of the immune ecology before
and after treatment



Modeling the Tumor Microenvironment
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Patient-Derived Aggressive Papillary
Thyroid Cancer (PTC) Cell Lines
(RAl-refractory)

GSP2

P

Cell number (10")

Sorafenib Sorafenib Lenvatinib Sorafenib Lenvatinib
+Lenvatinib
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Budget

20K for Post-doc to continue work with model

15K for technician to generate multiplex IHC of samples from pre- and post
biospies. Can be used to validate model in clinical specimens

15K for mice xenograft model



Functional Eco-Evo Index Panel in Development

GrzB CD34
Ki-67 CD31
Eomes CAIX
LAG3 CAXII
TIM3 EGFR
CTLA4 VEGFR
CD39 FGFR
VISTA c-MET
0X40 AKT
OX40L MSH2
GITR MSH6
4-1BB (CD137) MLH1
IDO PMS2
Thet




