Dark selection for JAK/STAT-inhibitor resistance in CMML

The Orange team, the future is bright...

Chronic Myelomonocytic Leukemia (CMML)

Inflammatory cytokines are elevated in CMML

N=219 CMML n=35 age-matched controls

Blue (10%) percentile Red (90%) percentile

Our analysis revealed prognostic links

What are the important cytokines related to:

Hov	v patients feel?	Spleen size?	Survival?
Poorer Outcome	MCP1 PDGFAA EGF RANTES SCF	IL5 SCF TRAIL MIG IP10	IL13 PDGFAA RAGE SCF RANTES
Better Outcome	FLT3 CD44 VEGF IL12p70 FGFBasic	FLT3 FGFBasic RAGE IL12p70 CD44	IL10 FGFBasic IL12.23p40 IL2Ra Exotaxin

Penalised regression from 48 plasma cytokine values of 161 CMML patients, prior to treatment

We lack good treatment options this lethal leukemia

Fenaux, et al Lancet Oncology 2009

Ruxolitinib: a new hope

Ruxolitinib: a new hope

Alas, resistance strikes back

We understand proximal mechanisms

"Normal" resistance: Darwinian selection of resistant (epi)genotypes

Dark Selection: evolution paradox

No impact on clonal architecture

Padron Clin Can Res 2016

Shining light on the paradox of dark selection

Unusual case of Darwinian selection

Non-darwinian selection/emergence

Shining light on the paradox of dark selection

Scales of Cancer

Alternative #1: hidden Darwinian selection

Alternative #1: hidden Darwinian selection

Hidden Darwinian selection is plausible

<u>Left panel</u>: ODE models on disease burden in the Bone Marrow <u>Right panel</u>: Moran process model on disease output into periphery

Hidden Darwinian selection is plausible

But:

No evidence of genetic changes: must be epigenetic No evidence for reduced proliferation/increased death

Considering microenvironmental pressure

Oxygen concentration strongly linked to STAT3 expression

- Hypoxia markedly increases STAT3 (and JAK) expression.
- This effect seen both with and without RUX present.

Bone Marrow at low O2 pressure (9-32 mmHg), despite high vascularity

- Oxygen consumption rate (OCR) markedly modulates hypoxia.
- Minor changes in OCR can lead to substantial increases in hypoxia.
- Can minor OCR shifts lead to STAT3 levels > RUX can counteract?

Slight perturbation of oxygen consumption rate leading to slightly different oxygen distributions (Grimes et al 2016, J R Soc Interface) by two vessels at the boundary. This oxygen map was set in accordance with measured O2 levels in bone marrow (Spencer et al, Nature, 2014).

STAT3 activation is inversely related to oxygen partial pressure. Data taken from Wang et al, Cell Biol.. Int., 2005

Hypoxia

$$\frac{\partial C}{\partial t} - D\nabla^2 C = S(x, y, STAT3) - \delta C$$

$$S(x, y, STAT3) = \Pi STAT3(x, y) \mathbb{1}_{Cells}(x, y)$$

$$C = 0 \text{ on } B_2 \text{ and } B_4$$

$$C_{|B_3} = C_{|B_1}$$

Sustained stabilization of Interleukin-8 mRNA in human macrophages (Mahmoud et al 2014, RNA biology). Diffusion of Interleukin-2 from cells overlaid with cytocompatible enzyme-crosslinked gelatin hydrogen (Yung et al 2010, J Biomed Mater Res A).

No Drug

Drug

Hypoxia

Situation 1 15.9 mmHg

Situation 2 13.1 mmHg

Situation 3 10.1 mmHg

Stochastic ratcheted phenotypic switch

Lamarckian selection

Emerging signaling network behavior

Alt. #2: Molecular basis of dark selection

time

Different sources of "dark selection" lead to different predictions

Hidden Darwinian selection

Stochastic ratcheted phenotypic switch

Lamarckian selection

Emerging signaling network behavior

Experiments to differentiate between the scenarios

(a) Tumour foci in the metaphysis but not in other regions of long bone (b), tumour foci in epiphysis and metaphysis but not in mid-diaphysis (c). 5x magnification. Figure from Holstead Jones et al, Nature, 2006

Integrating the continuous and CA models

 $\begin{aligned} \frac{\partial C}{\partial t} &- D\nabla^2 C = S(x, y, STAT3) - \delta C\\ S(x, y, STAT3) &= \Pi STAT3(x, y) \mathbb{1}_{Cells}(x, y)\\ C &= 0 \text{ on } B_2 \text{ and } B_4\\ C_{|B_3|} &= C_{|B_1|} \end{aligned}$

Hybrid Continuous-Discrete Cellular Automaton

Integrating experimental mouse data

+/- Ruxolitinib

Analyze in the bone marrow:

Spatial analyses: Blood vessels STAT3 activation

Experiments to differentiate between the scenarios

Scales of Cancer

- 8

Reductionism

SA1: To determine whether the emergence of ruxolitinib resistance is a Darwinian, Lamarckian, or non-cell autonomous process.

SA2: To determine the kinetics of cytokine expression and resultant symptomatology in patients treated with ruxolitinib...

To summarize

Suite of novel integrated mathematical models test different evolutionary hypotheses and provide experimentally-testable insights

Qualitative cytokine dynamics observed in the clinic can be captured in a simulation that models emergence of resistance

Critically, the resistance paradox may depend on the tumor microenvironment, hidden selection, and network selection

Questions?

Ruxolitinib for CMML

Ruxolitinib

Potent JAK1/2 inhibitor FDA approved for the treatment of primary myelofibrosis

In myelofibrosis, improvements in symptoms, spleen size, and cytokine levels are seen in the majority of patients.

Even in responding patients and mouse models, <u>no changes</u> <u>in tumor burden or mutational frequencies</u> are seen while on therapy.

Within months on therapy, symptoms return, spleen enlarges, and disease progresses.

Importance: Our approach addresses an important and unresolved evolutionary question that is applicable to CMML but also to a wide range of cancers. **Originality**: Suite of novel mathematical tools to explore a potentially novel mechanism of treatment resistance.

Feasibility: Padron and Marusyk's lab and the young talent at #teamOrange

CMML: therapy does not visibly impact relevant population

